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Abstract

A molecular thermodynamic model for binary lattice polymer solutions with concise and accurate expressions for the Helmholtz energy of

mixing and other thermodynamic properties is established. Computer simulation results are combined with the statistical mechanics to obtain the

expressions. Yan et al.’s model for Ising lattice and the sticky-point model of Cumming, Zhou and Stell are incorporated in the derivation. Besides

the nearest neighbor cavity correlation function obtained from the Ising lattice, the long range correlations beyond the close contact pairs are

represented by a parameter l, the linear chain-length dependence of which is obtained by fitting the simulated critical parameters of two systems

with chain lengths of 4 and 200. The predicted critical temperatures and critical compositions, spinodals and coexistence curves as well as internal

energies of mixing for systems with various chain lengths are in satisfactory agreement in comparison with the computer simulation results and

experimental data indicating the superiority of the model over other theories. The model can serve as a basis to develop more efficient models for

practical applications.

q 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

A variety of polymer-solution theories have been developed

during the latter half of the last century. Among them, the

lattice model is still a convenient starting point for the

prediction of phase equilibria of the various polymer systems.

The most widely used and best known is the Flory–Huggins

lattice theory [1,2] based on a mean-field approach, which

illustrates in a simple way the competition between the entropy

of mixing and the attractive forces that induces liquid–liquid

phase separation at low temperatures with an upper critical

solution temperature. However, it is known that a mean-field

approximation cannot correctly describe the shape of the

coexistence curves near the critical point compared with

experimental data [3–5].

Although some refinements were made progressively [6,7],

the lattice cluster theory developed by Freed and co-workers

[8–13] in 1990s was a landmark because it is formally an exact

mathematical solution of the Flory–Huggins lattice with a

complete and systematic analysis. Similar to Mayer’s theory

for non-ideal gases, they developed a double expansion in
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power series with respect to the reciprocals of the coordination

number z and the temperature T. However, because of the

complexity of the expansion, pages of equations are involved

even truncated at the first order or at the second order, the

practical usage of the theory for liquid–liquid equilibria

calculations is limited. Sometimes, the results are unsatisfac-

tory, for example, the prediction of critical compositions

exhibit unpleasant kink, which is in contradictory with the

computer simulation results [10,14,15].

To make the Freed theory accessible for engineering

purposes, Hu and co-workers [16–19] reported a revised

Freed model and a double-lattice model, the latter was

designed to account for the orientation effect of hydrogen

bonding. The empirical parameters in their model arose from

the truncation of higher order terms in the expansion of the

Helmholtz energy of mixing, were determined by using a few

Monte–Carlo simulation data of the system with chain length

of r1Z1 and r2Z100. Lambert et al. [20] and Bae et al. [21]

have made similar improvements. These models provide better

description of the experimental phase behavior including those

with a lower critical solution temperature, loop and hour-glass

type liquid–liquid coexistence curves. Recently, Chen et al.

[22,23] extended RFT to the random copolymer solutions, Bae

et al. [24] extend their modified double-lattice model to

polymer blend systems.

More than half a century, we have witnessed the problems

we faced on the lattice models. It is difficult to obtain concise
Polymer 47 (2006) 5187–5195
www.elsevier.com/locate/polymer

http://www.elsevier.com/locate/polymer
mailto:hlliu@ecust.edu.cn


List of symbols

A Helmholtz function

U internal energy

Nr number of total sites

N number of molecules

T temperature

T* reduced temperature

g radial distribution function

k Boltzmann constant

z coordination number

r chain length

q surface area parameter

p pressure

w weight fraction

Mw molecular weight

Greek letters

l parameter characterizing the long-range

correlations

3 exchange energy

3ij interaction energy of i–j pair

f volume fraction

q surface fraction

m chemical potential
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and accurate analytical expressions for Helmholtz energy of

mixing and other thermodynamic properties except by infinite

series expansion. Even for the simplest Ising lattice, only the

one-dimensional and the two-dimensional lattice can be solved

completely on the basis of statistical mechanics. The three-

dimensional lattice has yielded so far to rigorous analysis only

by way of series expansion [25]. We have to find a way out

other than the traditional statistical mechanical derivation.

Introducing the molecular simulation into statistical mechanics

to establish models seems to be an effective means to solve this

problem. A good example is the well-known Carnahan–

Starling equation for hard sphere fluids [26]. The equation was

established by a linear combination of the PY pressure equation

and the PY compressibility equation; coefficients of them were

judged by the computer simulation results. In our previous

work, we have developed an equation of state for hard-sphere

chain fluids in a similar way [27]. Based on the sticky-point

model of Cummings, Zhou and Stell [28–30], an expression of

residual Helmholtz energy in terms of the cavity correlation

function (CCF) was established where the nearest-neighbor

CCF was derived from the rigorous Tildesley–Streett equation

[31] inducted from computer-simulation results of hard

dumbbells, the next-to-nearest neighbor CCF was obtained

by fitting the simulation data of trimers. A concise equation of

state similar to Carnahan–Starling equation was finally

obtained for hard-sphere chain fluids.

We want to study the lattice polymer along the similar

approach, i.e. combining the molecular simulation with

statistical mechanics. Based on our previous work of Yan et

al. [32] for Ising lattice, we will go a step further to Flory–

Huggins lattice. The cavity correlation function (CCF)

formalism that has been successfully used in hard-sphere

chain fluids previously [27] will be adopted again. The long

range correlations beyond the close contact pair are represented

by a parameter l, the linear chain-length dependence of which

is obtained by fitting the critical parameters of two different

systems with chain lengths of 4 and 200. A concise and

accurate analytical expression for the Helmholtz energy of

mixing is then obtained. The molecular thermodynamic model

is then investigated comprehensively by comparing the
predicted critical temperatures and compositions, coexistence

curves, spinodals and the internal energies of mixing with the

corresponding simulation results for different systems with

various chain lengths. A few examples for practical application

are also presented. Finally, concluding remarks are given.
2. The molecular thermodynamic model

2.1. The general framework

We start from a simple cubic lattice containing Nr sites with

a coordination number zZ6. The lattice is filled with N1

solvent molecules, each one occupies one site, r1Z1, and N2

chain molecules with chain length r2. Only the nearest-

neighbor interactions are considered.

To obtain the Helmholtz energy of mixing DmixA, we design

a three-step process: (1) dissociate the pure chains to form pure

monomers; (2) mix solvents and monomers to form a mixture;

(3) associate the monomers into chain molecules. The bond

energies involved in the dissociation step (1) and the

association step (3) are mutual compensated, therefore, they

need not be considered in this scheme. The Helmholtz energy

of mixing DmixA can be expressed as

DmixAZKTDmixS0 CDA1 CDA2 CDA3 (1)

The athermal entropy of mixing DmixS0 is introduced

because the DA1, DA2, DA3 calculated later are the residual

Helmholtz energy change.

For the athermal entropy of mixing DmixS0, we simulated

the chemical potentials and the probability of 1–1 pairs for the

athermal mixtures with different r2 using chain insertion

method [33], and compared them with those calculated by

the Flory–Huggins theory [1] and the Guggenheim theory [6].

A cubic lattice of 16!16!16 sites with periodic boundaries in

three directions was used. Molecules of component 1 were

treated as cavities. Total of 107 configurations were generated

for each state where the first 2!105 configurations before

equilibrium were not included. The chain insertion was carried

out every 103 steps. For each of those configurations to insert

the chain, the insertion procedure was repeated several times
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Fig. 1. Chemical potentials of an athermal mixture with r2Z8. Squares: MC

results of this work. Dash line: predicted by Flory–Huggins theory. Solid line:

predicted by Guggenheim theory.
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dependent on the density. As shown in Fig. 1 for chemical

potentials of an athermal mixture with r2Z8, and in Fig. 2 for

the generalized plot of the probabilities of 1–1 pairs versus

surface fraction for athermal mixtures with various chain

lengths, the results from the Guggenheim’s prediction are

perfect, much better than that from the Flory–Huggins theory.

We therefore, adopt Guggenheim’s athermal entropy of mixing

[6] for DmixS0 in this work,

K
DmixS0

Nrk
Z

DmixSGuggenheim

Nrk

Zf1 ln f1 C
f2

r2

ln f2

C
z

2
f1ln

q1
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q2

r2

ln
q2

f2
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(2)

Here, fi and qi are the volume fraction and surface fraction

of component i, respectively, calculated by
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Fig. 2. Probabilities of 1–1 pairs of athermal mixtures with different chain

lengths MC results of this work: r2Z4 (open triangles); r2Z8 (open diamonds);

r2Z16 (open squares); r2Z32 (short bars); r2Z64 (crosses). Solid line:

predicted by Guggenheim theory.
fi Z
Niri

N1r1 CN2r2

; qi Z
Niqi

N1q1 CN2q2

(3)

where qi is the surface area parameter defined as

zqi Z riðzK2ÞC2 (4)

For the step (1) and step (3), the formalism of chemical

association through the cavity correlation function y in our

previous work [27] based on the sticky-point model of

Cummings, Zhou and Stell [28–30] can be employed.

The r-particle cavity correlation function (CCF) yðr2Þ is defined

by

yðr2Þ Z expðb3ðr2ÞÞgðr2Þ (5)

where gðr2Þ is the r-particle correlation function, 3ðr2Þ is the

attractive energy of a chain, bZ1/kT. The expression of

Helmholtz energy of association has been derived as [27],

b½AðaÞKAðaZ 0Þ�ZK
N2

r2

aK

ðaZa

aZ0

adln yðr2Þ

0
@

1
A (6)

where a is the degree of association. Differentiate the

Helmholtz energy with respect to density; we obtain the

equation of state. Integrate again; we then have the residual

Helmholtz energy Ar,

b½ArðaZ 1ÞKArðaZ 0Þ�ZKN2 ln yðr2Þ

ZKN2 ln gðr2ÞKN2b3
ðr2Þ (7)

For the first dissociation step, it is the reverse of an

association. For a pure lattice polymer, when it dissociates into

close-packed monomers, gðr2ÞZ1: From Eq. (7) we then have,

DA1 ZN23
ðr2Þ (8)

For the third step, associate monomers into chains, we have

from Eq. (7),

DA3 ZKkTN2 ln yðr2Þ ZKkTN2 ln gðr2ÞKN23
ðr2Þ (9)

Obviously, N23
ðr2Þ Eq. (8) and Eq. (9) cancels, only a term

with gðr2Þ is remained.

For the second step, DA2 is the residual Helmoltz energy of

mixing of an Ising lattice. Here we use directly Yan et al.’s

result [32]. It is expressed effectively by a truncated

polynomial,

DA2 ZDmixA
r
Ising

ZNrkT
z

2T�
f1f2K

z

4T�
f2

1f
2
2K

z

12T�3
f2

1f
2
2 f2

1 Cf2
2

� �h i
(10)

where T*ZkT/3 is a reduced temperature, 3Z311C322K2312 is

the exchange energy between solvents 1 and monomers 2, 3ij is

the attractive energy of i–j pair.

Eq. (l) now becomes.

DmixAZKTDmixSGuggenheim CDmixA
r
IsingKkTN2 ln gðr2Þ (11)
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All the procedures to calculate the Helmholtz energy of

mixing are now focused on the r-particle correlation function

gðr2Þ.
2.2. The r-particle correlation function

At present, it is almost impossible to derive an explicit

expression for gðr2Þ solely by statistical mechanics. Zhou and

Stell [30] adopted a linear approximation and simplified the

r-particle cavity correlation function by using the nearest-

neighbor two-particle CCF raised to an empirical power. In our

previous work for the hard-sphere chain fluids [27], we used

the next to nearest correlations, which were determined by

simulation. In this work, we follow the similar measure. If we

adopt Kirkwood’s superposition approximation, we can write

gðr2ÞZ ðgð2ÞÞr2K1 where g(2) is the radial distribution function.

However, this approximation neglects the long-range corre-

lations. We then introduce a parameter l into the exponential to

account for the long range correlations beyond the close

contact pair, we write
gðr2Þ Z ðgð2ÞÞr2K1Cl (12)
where g(2) and l are to be determined. The feasibility of the Eq.

(12) with l included is to be identified.

The radial distribution function g(2) in the above equation is

that of an Ising lattice. In our previous work [32], we have

derived expressions for the local volume fractions f22 and f11

through the non-randomness factor,
f22

f21

Z
f2

f1

f2 Cf1exp
1

T�

� �� �
(13)
Correspondingly, we can write the radial distribution

function as
gð2Þ Z
f22

f2

Z
1Cf1ðexpð1=T�ÞK1Þ

1Cf1f2ðexpð1=T�ÞK1Þ
(14)
Combine Eqs. (2), (10), (12) and (14) with Eq. (11), we have

a concise form of the Helmholtz energy of mixing for the

lattice chain fluids, which is composed of three terms: the

Guggenheim’s athermal entropy of mixing, the Helmoltz

energy of mixing of an Ising lattice, and the contribution of

dissociation and association expressed by the r-particle

correlation function, where includes a parameter l characteriz-

ing the long-range correlations beyond the close contact pairs.

The equation reads
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If r2Z1, Eq. (15) returns to Eq. (10) of the Ising lattice.

Using the well-known Gibbs–Helmholtz equation, differentiate

Eq. (15) with respect to 1/T*, we have the internal energy of

mixing,

DmixU
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Z
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2
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z
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(16)

The parameter l characterizing the long-range correlations

is remained to be determined.
2.3. Phase equilibrium calculations

The chemical potential of component i can be derived

through

m1Km:
1

kT
Z

vDmixA

vN1

� �
T ;V ;N2

;

m2Km:
2

kT
Z

vDmixA

vN2

� �
T ;V ;N1

(17)

Coexistence curves can be obtained by chemical-potential

equalities,

m
ðaÞ
1 Zm

ðbÞ
1 ; m

ðaÞ
2 Zm

ðbÞ
2 (18)

Spinodal and critical point are obtained by

v2DmixA=NrkT

vf2
1

� �
T ;V

Z 0;
v3DmixA=NrkT

vf3
1

� �
T ;V

Z 0 (19)

2.4. Parameter l

If we neglect the long-range correlations, lZ0, we can still

use the above equations to carry out the phase equilibrium

calculations. Later we will show that although the prediction is
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better than that of the Flory–Huggins theory, the discrepancy is

still serious. Introduction of l is definitely necessary.

We express the chain-length dependence of l as

lZ
ðr2K1Þðr2K2Þ

r2
2

ðar2 CbÞ (20)

The pre-factor is introduced because when r2Z1 or 2, lZ0.

The main part is a linear function. To determine the parameter

l characterizing the long-range correlations, we can either use

the simulation results of the critical parameters or that of the

internal energies of mixing. Here we adopted the first approach.

Simulated critical temperatures and compositions for two

systems with chain lengths of 4 and 200 [14,15] were adopted.

We obtained aZ0.1321 and bZ0.5918.

Now we have a complete molecular thermodynamic model

for a binary lattice polymer solution as shown by Eqs. (15) and

(20).
3. Comparisons with results by simulation and other
theories

3.1. Critical temperatures and compositions

Figs. 3 and 4 are the chain-length dependence of the critical

temperature and the critical volume fraction for binary lattice

polymer solutions. Simulation results of Yan et al. [14] and

Panagiotopoulos et al. [15] are adopted. As shown in the

figures, the prediction of Flory–Huggins theory is poor. The

prediction of this work when lZ0, i.e. neglect the long-range

correlations, is improved, however, still has discrepancies. As

for the Freed theory, the prediction of critical temperatures is

good, as shown in Fig. 3, it is only slightly overestimated.

However, unfortunately, the prediction of critical volume

fractions is unexpectedly bad as shown by the unpleasant kink

in Fig. 4. When the long-range correlation is incorporated in

this work, by introducing a parameter l, the prediction of the

chain length dependence of the critical parameters is much

improved as shown in these figures.
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Fig. 3. Chain-length dependence of the reduced critical temperature, T�
c wr1=2

2

plot. Square: MC data of Yan et al. [14]. Triangles: MC data of

Panagiotopoulos et al. [15]. Solid line: this work. Dot dash line: this work,

lZ0. Dash line: Flory–Huggins’s theory. Dot line: Freed theory.
3.2. Coexistence curves

Figs. 5–8 show comparisons between simulated coexistence

curves with those predicted by various theories for systems

with r2Z4, 32, 100 and 400. Simulation results of Yan et al.

[14] and Panagiotopoulos et al. [15] are adopted. Again, the

Flory–Huggins theory gives much higher and narrower curves

indicating poor predictions. Results by this work and by Freed

theory are also presented. Generally, this work shows

satisfactory results, slightly better than those by Freed theory.
3.3. Spinodals

Figs. 9 and 10 show comparisons between simulated

spinodals with those predicted by various theories for systems

with r2Z18 and 60. Simulation results of Rodriguez et al. [34]

are adopted. The MC data of critical points are taken from Yan

et al. [14]. As shown in these figures, this work gives

satisfactory predictions, slightly better than that by the Freed

theory, much better than that by Flory–Huggins theory.
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Fig. 5. Coexistence curves of a binary lattice polymer solution with r2Z4.

Squares: MC data by Yan et al. [14]. Solid line: this work. Dash line: Flory–

Huggins’s theory. Dot line: Freed theory.
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3.4. Internal energies of mixing

We simulated the internal energies of mixing for binary

lattice polymer solutions with various chain lengths by

counting the numbers of different contact segment pairs. The

simulation box was a cubic lattice of 80!80!80 with periodic

boundaries in three directions. The Rosenbluth and Rosenbluth

method [35] was adopted. The first 2!107 configurations

before equilibrium were skipped. In the following 2.5!107

configurations contact segment pairs were calculated every 104

steps. Figs. 11 and 12 are two examples with r2Z8 and 64,

respectively. The ordinate is a normalized internal energies of

mixing expressed as zDmixU/2Nr3f1f2 which is more sensible

at the dilute region and the very concentrate region.

Calculations of this work are performed by Eq. (16). Flory–

Huggins theory predicts a constant normalized internal energy

of mixing of 1.0, which cannot be verified by the simulation

results as shown in the two figures. Freed theory and this work

both give a good prediction at three different temperatures.

Freed theory’s prediction shows over-estimated results at lower

temperature. Prediction of this work behaves slightly better.
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Fig. 7. Coexistence curves of a binary lattice polymer solution with r2Z100.

Squares: MC data by Yan et al. [14]. Triangles: MC data by Panagiotopoulos et

al. [15]. Solid line: this work. Dash line: Flory–Huggins’s theory. Dot line:

Freed theory.
4. Applications to real systems

To calculate liquid–liquid equilibria of real systems, we

need the model parameters r2 and 3/k. In this work, the critical

temperature is used to determine 3/k. For r2, there are two

simple choices [20,21]. One is to estimate the value of r2/r1 by

the ratio of the molar volumes of the corresponding

components at a specified temperature. The second is to obtain

r2 by fitting the critical composition. Similar to many other

authors [16,20,21], we select the second choice for the first two

examples. For accounting the molecular weight dependence of

r2, we adopt the direct proportional relationship between Mw

and r2 and fix 3/k as a constant for the last two cases.

Fig. 13 shows coexistence curves of poly(isobutylene)(-

PIB)/diisobutyl ketone systems where the polymer has two

different molecular weights, 22,700 and 285,000. Experimental

data are taken from literature [36]. The results calculated by

this work are presented showing good fit.

Fig. 14 shows the binodal and spinodal curves of

polystyrene(PS)/methyl cyclohexane system. The molecular

weight of PS is 37,900 [37]. As shown in this figure, although

there is a slight deviation between the experimental data and
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Fig. 9. Spinodal curves for a binary lattice polymer solution with r2Z18. Open

squares: MC data by Rodriguez et al. [34]. Solid squares: critical point by Yan

et al. [14]. Solid line: this work. Dash line: Flory–Huggins’s theory. Dot line:

Freed theory.



1

2

3

4

5

0.0 0.2 0.4 0.6 0.8 1.0
F2

T
*

Fig. 10. Spinodal curves for a binary lattice polymer solution with r2Z30.

Legend: the same as Fig. 9.
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Fig. 12. Normalized internal energy of mixing for a binary lattice polymer

solution with r2Z64. Legend: the same as Fig. 11.
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calculated results of the spinodal curve, our model can

reproduce the experimental data well.

Fig. 15 compares calculated and experimental coexistence

curves for the PS/cyclohexane mixtures where the molecular

weights of PS are 20,400, 100,000 and 610,000, respectively.

Experimental data are from literature [38]. In this work, we fix

the values of Mw/r2 and 3/k as constants, which are Mw/r2Z
135.7 and 3/kZ87.1 K. From the figure we can see that the

description is good for the long-chain case, however, it

gradually deteriorates when the molecular weight is lower.

Fig. 16 shows the spinodal curves of the PS/cyclohexane

systems. Experimental data are reported by Scholte et al. [39],

and critical points are taken from Koningsveld et al. [40]. We

still use the same model parameters Mw/r2Z135.7 and 3/kZ
87.1 as in Fig. 15. Similarly, the predicted result for system

having longer chain is better than that having shorter chain.

Recently, Qiao and Zhao [41] developed a theory; their results

(dot lines) are also presented as a comparison. But it should be

noted that the chain length is not dependent on the molecular
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Fig. 11. Normalized internal energy of mixing for a binary lattice polymer

solution with r2Z8. MC data: kT/3Z4 (open squares); kT/3Z10 (open

triangles); kT/3ZK10 (open diamonds). Solid lines: this work. Dot line: Freed

theory. Dash line: Flory–Huggins theory.
weight and the energy parameters are also not a constant in

their work.
5. Discussion and conclusion

We have developed a molecular thermodynamic model with

concise and accurate expressions for the Helmholtz energy of

mixing and other thermodynamic properties for binary lattice

polymer solutions. It is composed of three terms: the

Guggenheim’s athermal entropy of mixing, the residual

Helmoltz energy of mixing of an Ising lattice, and the

contribution of dissociation and association described by the

r-particle correlation function. In the latter, a parameter l

characterizing the long-range correlations beyond the close

contact pairs is introduced. Besides the pre-factor, the main

part of the parameter l is linearly chain-length dependent. The

dependence is determined by simulated critical parameters for

two systems with chain lengths of 4 and 200. Tested

comprehensively by comparing the predicted critical tempera-

tures and compositions, coexistence curves, spinodals and the

internal energies of mixing with the corresponding simulation
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Fig. 13. Coexistence curves of PIB/diisobutyl ketone mixtures. Experimental

data [36]: MwZ22,700 (squares); MwZ285,000 (triangles). Solid lines: this

work, r2Z520, 3/kZ87.2 K, MwZ22,700; r2Z4500, 3/kZ92.1 K, MwZ
285,000.
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Fig. 16. Spinodal curves of PS/cyclohexane systems. Experimental [39]: MwZ
51,000 (squares); MwZ163,000 (triangles); MwZ520,000 (diamonds).

Corresponding critical points from Koningsveld et al. [40]. Solid lines: this

model. Dot lines: Qiao and Zhao’s theory [41].
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Fig. 14. Binodal and spinodal curves of polystyrene (PS)/methyl cyclohexane

mixture. Experimental data [37]: binodal curve (squares); spinodal curve

(triangles). Solid lines: this work, r2 Z270, 3/kZ94.7 K.
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results and experimental data for different systems covering a

wide range of chain lengths indicating the reliability and

feasibility of the model developed and the characteristic

parameter introduced. The results also indicate the superiority

of the model over other theories including the rigorous Freed

theory. For practical applications, preliminary examples show

good behavior except for cases with shorter chains. The model

can serve as a basis to develop more efficient models, for

example, constructing a double-lattice model [16–19] to

account for the orientation effect of hydrogen bonding,

therefore, more complex phase behavior such as LCST, loop

and hour-glass type coexistence curves can be accurately

described.

In developing a theoretical model, statistical mechanics is

generally a first choice. However, its power is always limited

because of the mathematical difficulties. Molecular thermo-

dynamics seeks to overcome this limitation. Besides some

semi-empirical approach based on concepts from statistical

mechanics, on ideas from molecular physics and on infor-

mation from molecular structures, introducing molecular

simulation results to overcome the mathematical difficulties

gives us new impetus to develop more accurate models. The
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Fig. 15. Coexistence curves of PS/cyclohexane mixtures. Experimental data

[38]: MwZ20,400 (squares); MwZ100,000 (triangles); MwZ610,000 (dia-

monds). Solid lines: this work.
method used in this work retains the rigorous of the statistical

mechanics. At first, analytical expression is obtained, however,

it may contain unknown functions or coefficients because of the

mathematical difficulty or sometimes because of the simplifi-

cation introduced. The form of the unknown functions or

unknown coefficients is then determined by a few computer-

simulation results. This work proves that this method is very

effective as shown by the final concise expressions and the

good quality of the predictions. The key of using this method to

meet with success lies in the reasonable choice of the form of

the unknown function and the high quality of simulation

results. In this respect, there is still room for improvement on

the term characterizing the long-range correlations of this

work.
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